STRUCTURED DOCUMENTATION FOR A FOURTH GENERATION LLANGUAGE

Structured Documentation for a Specific Type of Fourth Generation
Language: Electronic Spreadsheets

CHARLES R. NECCO
NANCY W. TSAI

SCHOOL OF BUSINESS ADMINISTRATION
CALIFORNIA STATE UNIVERSITY, SACRAMENTO

BARBARA SMITH
INFORMATION ANALYST
COUNTY OF NAPA MANAGEMENT INFORMATION SERVICES

ABSTRACT

Many problems associated with using fourth generation languages stem from people and environ-
ments rather than the software itself. Some users become designers — resulting in application and
sharing and recycling. If these applications are to be reliable, maintainable, and expandable, communi-
cation in this shared environment is critical. This paper explores the use of structured programming
concepts, techniques, and tools used for solving design and documentation problems.

INTRODUCTION

Fourth generation languages have arrived, specifically
in one of their more popular forms — electronic spread-
sheets. During the past few years, the power of mainframe
computers has become available to nontechnical users through
desk top computers. Together, these software and hardware
improvements have drastically reduced computing costs and
gained the attention of potential business users in a muititude
of problem-solving situations.

Because electronic spreadsheets are “user seductive,”
end users are allowed the capability of solving some of their
own data processing problems by putting computers to work
in various organizational settings. In some cases, however,
after realizing the initial benefits of this easy to use software,
electronic spreadsheet users have faced the reality of high
cost end products lacking quality assurance, and difficult to
maintain programs [10]. This situation emphasizes the ines-
capable need for policies and controls to manage the power
unleashed by these fourth generation languages.

The data processing world has anticipated full arrival of
fourth generation languages since their late 1970s introduc-
tion. The use of third generation languages, such as COBOL
and FORTRAN, increased programmer productivity by re-
placing several assembly language instructions with one high-
level language command. Organizations, unable to keep pace
with growing demands for timely computer application de-
velopment, recognized a need for higher productivity lan-
guages which would be user friendly, make applications
casier to create/debug/maintain, and significantly speed up

the application building process [7]. Such has not always
been the case.

In the 1960s, third generation languages brought a new
potential to develop application programs. A backlog of
demiands for modifications to existing programs and devel-
opment of new applications soon evolved. Very little fore-
thought was given to program design, and documentation
was poor or nonexistent. Maintaining massive third genera-
tion language programs became a difficult task which con-
tinues to the present day.

Initially, the response to this situation focused on the
immediate problems — programming and documentation.
The solution centered around a structured approach which
would be more logically clear and easier to communicate.
The new methodology included programming tools and
techniques such as top down design, modularization, struc-
ture charts, and Warnier-Orr diagrams [3,4].

Structured programming provided a means for solving
many problems confronted in the third generation language
environment. Since many structured techniques are procedure
oriented, it is difficult to directly apply traditional structured
programming techniques to nonprocedure-oriented spread-
sheets. Instead, one must find different ways to achieve
structured programming goals in the new electronic spread-
sheet environment. The basis for meeting the goals of reli-
ability, maintainability, and extendibility in spreadsheet ap-
plications begins with a well structured spreadsheet applica-
tion design. But, even well structured applications may not
intuitively be understood without supporting documentation

Journal of Information Technology Management, Volume II, Number 1, 1991 31

NECCO, TSAI AND SMITH

communicating what is happening, where, and why. Its final
documentation, then, must be structured to reflect both pro-
cesses which guided the spreadsheet creation, as well as the
structured nature of the spreadsheet itself.

The purpose of this paper is to explore the use of struc-
tured programming concepts, techniques, and tools used for
solving design and documentation problems currently found
in fourth generation language spreadsheet environments. A
structured documentation methodology — specifically for
declarative, nonprocedural spreadsheet languages — is pre-
sented. The documentation includes the spreadsheet map,
the framework documents, the macro documents, the named
range dictionary, and the user manual.

This structured documentation methodology utilizes the
concepts of top-down design and modularity to facilitate
understanding and communication. Among the documenta-
tion components the spreadsheet map, framework documents,
and named range dictionary were developed to fit the unique
documentation needs of a spreadsheet declarative language.
The rationale for developing these new tools is provided,
along with examples. Macro documents present the logic of
individual macros using the Wamier-Orr diagramming
technique, but other structured detailed logic diagramming
techniques could be used. The user manual was written
emphasizing the need for a readable and useful set of in-
structions from the user’s perspective.

The authors, two MIS educators and a practitioner, are
experienced in traditional and structured documentation
techniques. In this research, an attempt was made to under-
stand the requirements for documenting a spreadsheet lan-
guage and then using or modifying existing tools and devel-
oping new tools as necessary. The methodology documented
a Lotus 1-2-3 spreadsheet application which automated a
quarterly claim report. The report was subsequently filed
with the state of California by a county human services

agency.
Electronic Spreadsheets

The first electronic spreadsheet package, VisiCalc, was
developed in 1978 by a group of Harvard Business School
students specifically for the financial analyses of business
case assignments. Since then, spreadsheet software developers
have used technological advances such as database operations
and word processors to create a new generation of integrated
spreadsheet packages with more capability and power.
Spreadsheets do not require conventional computer pro-
gramming; they do require an understanding of applied
business mathematics, accounting, and financial modeling.
A spreadsheet application can be as simple as totaling a
series of columns or as complex as making and combining
detailed financial projections.

Spreadsheet languages are not procedural programming

languages, but rather a form of nonprocedural language called
“declarative” [7]. In other words, a spreadsheet program is
not a list of command statements executed sequentially from
top to bottom. Instead, a spreadsheet is a framework of
formulas and data organized into a matrix of rows and col-
umns. Each row and column intersection is a cell where data
or a formula can be stored. The command sequence is deter-
mined by cell relationships defined within the matrix frame-
work. There may be multiple frameworks in a single
spreadsheet. The spreadsheet applications are called tem-
plates. Keystrokes performing specific functions can be stored
in macros.

Existing Documentation Standards

By and large, the spreadsheet market has been com-
posed of non-data processing users, so it is not surprising
that most spreadsheet-related literature has been written for
this market. Until recently, the emphasis on spreadsheet
package usage has been toward maximizing short-term ben-
efits through the use of special features, functions, and ap-
plications. Minor attention was given to design and docu-
mentation considerations. The increasing realization of im-
pending disaster and chaos — precipitated by this trend —
has produced new concerns for improving the reliability and
maintainability of spreadsheet applications.

Early spreadsheet documentation, for the greatest part,
was internal to the specific spreadsheet application and largely
narrative; the first concern being to properly identify the
spreadsheet and to explain its purpose and use. External
documentation tended to be a spreadsheet printout with its
supporting internal narratives. The addition of the macro
capability functions brought concern about the spreadsheet’s
physical layout, where the macros and the frameworks should
be placed relative to one another, and documentation of the
cryptic macros themselves. Popular “how to” books stressed
a need for internal macro documentation, recommending a
style of storing comments next to each macro code line in the
column to the right of the macro [6].

Not until recently have articles, directed at the non-data
processing user, been published to specifically detail methods
of improving spreadsheet design and documentation. Rec-
ommended design methods have emphasized consistency
and clarity, structuring macros, and improved documentation.
Significantly, the documentation suggested for both internal
and external use has included non-narrative forms such as
lists, tables, and charts. A Fritz Grupe authored article im-
pressively offers 21 excellent tips for better spreadsheet
documentation [5].

STRUCTURED DOCUMENTATION FOR
ELECTRONIC SPREADSHEET APPLICATIONS

Five major structured documentation components for a

32 Journal of Information Technology Management, Volume II, Number 1, 1991

STRUCTURED DOCUMENTATION FOR A FOURTH GENERATION LANGUAGE

Figure 1. Spreadsheet Map

MPRCOST WORKSHEET MAP
PAYROLL COST MODULE, AE.C. ,
Columns: A..l J K.. W X Y..AH
Al...I20 K1...W115 Y1...AH9 Quarter Menu
Y10...AH24
Message display
area Quarter messages
Payroll detail Y11...AH140
worksheet area
Macros this area is reserved for
future worksheet and
macros to calculate end of
quarter adjustments
A75...1100
Quarter
initialization
macros
b @ e s ¢ ¢ © o 6 6 0 4 4 00 0 a0 04 a4
Al101...I1150
K116...W129
Salary by program table
Menus
K130...W134 Criterion range
K135...W146
PRcSummaryarea ® @ ©® & & 0 0 0 06 0 0 ¢ 8 8 0 & 0 0 0 o o o o
Y141...AH176
K147...W164 Quarter labor distribution
b ¢ 6 6 0606 06 06 0600606060606 060606 0 040 0 o SBAsalary worksheet area
worksheet arca
A151.‘.Il75 I & & o ¢ & 0o 0 ¢ & 0 0 o 0 0 0 0 O 0 0
Message area K165...W176
SBA benefit worksheet area benefit ratio area

Source: Human Services Agency, Napa County, California

more reliable development — and subsequent maintenance—
of spreadsheet packages are proposed: the spreadsheet map,
framework documents, macro documents,

dictionary, and the user manual.

the named range

Spreadsheet Map

The recommended documentation begins by looking at
the spreadsheet as a whole. The larger and more complex the

spreadsheet, the more important the overview model be-
comes. The structured top-down approach should be adopted

Journal of Information Technology Management, Volume II, Number 1, 1991

33

NECCO, TSAl AND SMITH

in this design stage [8]. The concept of using a graphic tool to
decompose a complex system or problem into clear, logical,
and interrelated component parts should be applied. This
decomposition process should be continued until each part is
a single human understandable function.

Therefore, it is important 10 emphasize the topography
of the spreadsheet at the top level. In this context, topography
refers to how the entire spreadsheet’s various component
parts lie relative to one another. The map shows the location
of framework(s), macros, assumptions, etc. This spreadsheet
map is an effective communication tool which provides the
overall structure of the spreadsheet at a glance.

Each component of the map may be further broken
down as deemed appropriate. Additionally, each component
should be further documented. The map is both an overview
and a table of contents for the spreadsheet and its external
documentation. (See Figure 1.)

Framework Documents:

1. General. The framework is the single most important
component of a spreadsheet. It is the root of the application,
encompassing the model upon which the application is built.
The documentation for each framework should include the
framework matrix, input and formula tables, and a named
range directory.

2. Framework Matrix. Much like the spreadsheet map,
the framework matrix shows the overall layout of the
framework. A printout, of the framework itself is necessary
for the documents. On the printout, three areas need to be
designated: title cells, input cells, and formula cells. Title
cells are usually self-evident in the printout. Input and formula
cells can easily be highlighted with colored marking pens for
quick visual reference. (See Figure 2.)

3. Input and Formula Tables. To explain and define
the model, both input and formula cells need further docu-
mentation. Many spreadsheet packages have a print option

Figure 2. Framework Matrix

MPRCOST, QUARTER WORKSHEET

AR AB

141
142

143 LABOR DISTRIBUTION WORKSHEET FOR QUARTER ENDING

144
145
146
147
148 QUARTER |

JURY STAND BY

149 SALARIES ouTY

150 e

LESS: DEDUCTIONS AND ADJUSTMENT i

DIRECT COST APPL]ED{ QUARTER
ADJUSTED

' GUARTER QUARTER
SOCL SRVC|ST.HELENA| SALARIES

BENEFITS TOTALS

151 ADMINISTRATION (V2167)
152

152 CLERICAL

154

155 COUNTY

156

157 ELIGIBILITY/
158 NONSERVICE
159 FOOD STAMPS
160

161 SOCIAL SERVICE (v2172)

(V2168)
(v2169)
(v2170)
(v2171)

(2151)-(aSU (AF151)*($B (AF151)+(AG
(Z153)-(aSU (AF153)*($B (AF153)+(AG
(2155)-(aSUY (AF155)*($B (AF155)+(AG
(Z157)-(aSU (AF157)*($B (AF157)+(AG

(Z159)-(aSUY (AF159)*($B (AF159)+(AG

162 e

163
164 TOTAL PROGRAM
165
166
167
168

(2161)-(aSV (AF161)*($B (AF161)+(AG

SIF(AROUND(1F(AROUND(I F(‘QROUND(.

N

crossfoot checks:

169 !

mn BENEFIT RATIO GROSS
172 CALCULATION:

ST. MENTAL

BENEFITS | HELENA HEALTH

170 } ---------------------------------
|
i

NET BENEFIT
BENEFITS RATIO:

NET BENEFITS

OTHER / NET SALARY

174 (BENEFIT GR [— I I
175

(2174)-(asSU (NET_BEN)/(

176 ===
m—
areas

Source: Napa County, California

34 Journal of Information Technology Management, Volume II, Number 1, 1991

STRUCTURED DOCUMENTATION FOR A FOURTH GENERATION LANGUAGE

Figure 3. Input Table

Input Table: Quarter Worksheet

DESCRIPTION

RANGE
Row
I SR S
AAl174...AD174 benefit adjustments for direct costs, deductions = St. Helena, mental health,
| VSO, other
R i format 99.999.99
Column
salary adjustments by program for direct costs, deductions
e format 99.999.99 o
AA151...AAl161 jury duty
—— S . —
ABI151 ... AB161 stand by
AC151...AC161 other
U ——

AD151...AD16l

b e J—

social service direct costs

AE151... AE161

St. Helena direct costs

Cell

e Y R

AE143, AF143

no direct user input

unprotected for quarter date input from quarter macros

Source: Napa County, California

which will list cell addresses and their contents. While this is
an easy way 10 get a printed record of each cell, it is too
disjointed to qualify as useful documentation. It is particularly
inadequate in documenting formulas and models. The input
and formula tables are a clear and concise way of doing this.

Most data input is organized into records (rows) and
fields (cells). The input table lists each input field, its cell
range, data source, and brief description of the data item.
(Figure 3 illustrates an input table which corresponds to
input areas defined in Figure 2.)

Formula tables are especially critical because formulas
are the building blocks of an application model. A formula
which is altered accidentally or copied incorrectly can sabo-
tage the best model. Many formulas are too long to be
displayed in full on the framework map printout but need to
be listed completely in supporting documentation.

The formula table lists each base formula, its cell range,
and a brief description and/or explanation of its function. If a

formula is copied over a range of cells, it should be noted
whether cell references in the formula are absolute or relative.
The descriptive narrative can include the formula in con-
ventional mathematical notation, how formula results should
look, result acceptance criteria, etc. Complex formulas should
be explained, including what is being calculated, formula
components, and mathematic or model source references
outside the spreadsheet. (See Figure 4.)

Named Range Directory (framework)

It is important to keep track of named ranges within a
framework, especially if they are referenced elsewhere in the
spreadsheet. The named range directory lists ranges and cell
addresses for each framework. Named ranges are further
documented in the spreadsheet’s named range dictionary.
(See Figure 5.)

Journal of Information Technology Management, Volume 11, Number 1, 1991 35

NECCO, TSAI AND SMITH

Range
7151 7161
AF151 AF161

Source: Napa County, California

Figure 4. Formula Table

Formula Table: Quarter Worksheet

Formula

Description

(range name)

program gross salaries from the salary by
program table

(leij - (@SUM (AA151 ... AE151))

all relative reference subtracts row
entries for columns AA through AE
(deductions) from quarter gross salary in
column Z

(AF151) * ($BEN - RATIO)

(AF151) relative reference

(BEN - RATIO) absolute reference
multiplies BEN - RATIO (range name
for AG174) times quarter adjusted salary
in column AF

(AF151 + AG151)

all relative reference totals row entries,
columns AE AG

@SUM (Z151...2161)

all relative reference adds column, rows
151 through 161

(BENEFIT - GROSS)

range name for V175 gross benefits for
quarter

(ii;m) - (@SUM (AA174. .. AE174))

subtracts columns AA through AD
(deductions) from gross benefits in
column Z

(NET - BEN) / (NET - SAL)

calculates benefit ratio by dividing net
benefits by net salaries (uses range
names)

| @iF (@ROUND (NET - SAL2) =

@ROUND (Z164) - (@SUM AA164 . . . AE164),2),

+ 7164 - @SUM (AA164 ... AE164), @ERR

@IF (@ROUND (AH164,2) = @ROUND (NET - BEN,2),

(NET - BEN), @ERR

@IF (@QROUND (AH164,2) = @ROUND (+NET - SAL + AG164,2),

(+NET - SAL + AG164), @ERR

These are crossfooting error check formulas. If the column total is equal to the relative
formula of the column, the relative column formula for the row is displayed in this cell
If they are NOT equal, display "Err." Rounding to two decimal places is used to pre-

vent trailing decimal.

36

Journal of Information Technology Management, Volume II, Number 1, 1991

STRUCTURED DOCUMENTATION FOR A FOURTH GENERATION LANGUAGE

Figure 5. Named Range Directory

‘ MPRCOST WORKSHEET
| PAYROLL COST MODULE. A. E. C.
A RAﬁE}EﬁXME DIRECTORY (ALPHABETICAL)
«‘: o :R_llnl!e Name R Address Worksheet
_AD-GROSS | vio TABLE
| BENEFIT-GROSS | V175 - SBA
‘ BEN - RATIO | AGITA OTR
| BLANK | a0]
{ CL- 9_89_5__5 V1o TABLE
; CODE-INPUT-CELL | LI33 CRITERIA
| CORRECT-MENU | BI37...E138
C0- GROSS v TABLE
. DATEL - E7
_ DATE2 R I i
. DATE- QEELI s PRDTL
| DATE-CELL2 T6 PRDTL
 DATE-MENU | BS8S...E89
_ DRIVER - _MENU | B102...E103
 ENTER-MENU B119...H120
EN-GROSS Vi22 TABLE
FS-GROSS | i TABLE

Source Napa County, Cahforma

Macro Documents:

1. General. Macros make more efficient use of the
programming language of electronic spreadsheets. Developing
macros is like creating your own function keys to customize
a spreadsheet application. This is done by storing — usually
in spreadsheet cells — a series of keystrokes in the spread-
sheet package’s command language. The macro cell or cells
are given a range name representing a unique key combina-
tion — as the keys are invoked, keystrokes stored in the
name cell begin to execute in sequence exactly as stored.
Most contemporary spreadsheet packages have predefined
powerful macro function commands which allow branching,
limited if-conditioning, calls to other macros, and menu
building.

If one is not well-acquainted with a spreadsheet package’s
command language, reading the stored macros is difficult —
if not impossible. The design and documentation of these
highly developed macros is akin to that required for third
generation program language applications. External docu-
mentation of these macros becomes increasingly critical for
application evaluation and maintenance.

Top-down documentation of macros means document-
ing encompassed procedures from the general to the specific.
Two tools for top-down documentation can be used: Warnier-
Orr diagrams for general documentation of structured mac-
ros, and a macro dictionary to document macro detains
[11,12].

2. Warnier-Orr Diagrams. For complex macros, the
Warnier-Orr structure gives a quick overview of the macro

Journal of Information Technology Management, Volume II, Number 1, 1991 37

NECCO, TSAI AND SMITH

Table 6. Warnier-Orr Diagram for a Menu Macro

/TaWORKSHEET~
/TeWORKSHEET~
/TuDATE~
[uUNIT~

SOCIAL SERVICE
Load Social Service
recap worksheet

/ruSPVSRHRS~
/TuUNAMES~
/ruINPUT~
{goto}Al~
/fcce TSRSW~
{goto}B1~

fwtv

/xg\M~ | \xmMAINMENU~

/rTaWORKSHEET~
/TeWORKSHEET~
/TpWORKSHEET~
/TuDATE~
[TulUINIT~

ELIGIBILITY
Load Eligibility
and Nonservice

/ruSPVSRHRS~
/rTuNAMES~
/INPUT~

LOADMENU recap worksheet

{goto}Al~
/fcceTSRSW~
{goto}B1~
fwtv

/xgM~_ | \xmMAINMENU~

/TaWORKSHEET~
/reWORKSHEET~
/rpWORKSHEET~
/TuDATE~
fuUNIT~

FOOD STAMPS
Load Food Stamps
I e w1 recan worksheet

/ruSPVSRHRS~
/TuUNAMES~
/muINPUT~

{goto}Al~
/fcceTSRSW~
{goto}B1~
fwtv

/xg\M~ \xmMAINMENU~

ourT

Return to
main menu

xgM~_ \xmMAINMENU~

Source: Napa Couniy: California

and/or menu relationships and serves as a table of contents
for the detailed macro documentation. In simpler cases, the
diagrams may be carried out to the macro code level providing
all external documentation is in one format. (See Table 6.)
3. Macro Dictionary. For understandability, complex
macros need to be broken down into digestible phrases.

Sometimes macros — especially those called by menu se-
lection — perform a series of related tasks. Within each
individual macro documentation, the section of codes ac-
complishing specific tasks should be separated and tasks
should be identified. .

Each macro dictionary document should begin with the

38 Journal of Information Technology Management, Volume II, Number 1, 1991

STRUCTURED DOCUMENTATION FOR A FOURTH GENERATION LANGUAGE

Figure 7. Macro Dictionary

Macro Dictionary
System: HSDS ADMINISTRATIVE CLAIM Date Prepared: 03/86
Module: PAYROLL COST Prepared by: BAS
File Name: MPRCOST
Reference: (MAIN) DRIVER.QUARTER MENU. PRINT REPORT
Purpose:

To print quarter labor distribution report.

Working
Name Command Description
PRINT REPORT (Print the quarter labor distribution worksheet)

This macro performs the following tasks:
(1) Copies a print message to the user.

(3) Prints the worksheet.

(2) Puts the macro on "hold" until the user has prepared the printer and is ready to print.

(4) Copies a new message to the user and returns to the main menu.

Jwitc

worksheet, title, clear - clears any title lock

{goto} {home}~

move cursor to home position

/TeMESSAGE - AREA~

erase message box

/cQUARTER - PRINTMSG~MESSAGE - DISPLAY~

copy print message to the message display
area

Source: Napa County, California

macro’s name of menu selection, brief statement of purpose,
and key identity stroke labels/range defining it. Subroutines
unique to macros may also be included, but should be iden-
tified in the name and label sections. Organization of the
macro dictionary will vary with a macro’s structure, but a
rule of thumb is to group together menu selections before
moving to the next menu level. (See Figure 7.)

Names Range Dictionary (spreadsheets)

Named ranges in spreadsheets are equivalent to data or
variable names in procedural programming languages. They
are used in commands, formulas, and macros. In declarative
spreadsheet languages, named ranges cannot be considered
data flowed, data stores, or data processes. Depending upon
use, named ranges may exhibit characteristics of any combi-
nation, or none of them. Clearly, traditional data dictionary

formats will not suffice. A new form should be used that will
give exact and complete definitions for each named range
including where the named range is referenced.

Therefore, the named range dictionary should include
basic information regarding system, spreadsheet and/or
framework, and by whom and when the dictionary entry was
prepared. The dictionary should list the range name or its
alias, the cell location, named subset ranges, a brief named
range description, and reference location. (See Figure 8.)

The completed named range dictionary shows relation-
ships between frameworks, formulas, and macros. When
applications must be modified, the dictionary provides a map
to evaluate the possible “ripple effects” of a change which
might otherwise go unnoticed. Therefore, it provides clear
and concise documentation for the required maintenance to a
spreadsheet application.

Journal of Information Technology Management, Volume II, Number 1, 1991 39

NECCO, TSAI AND SMITH

Figure 8. Named Range Dictionary

System: HSDS ADMINISTRATIVE CLAIM "Date Prepared: 03/86
Module: PAYROLL COST Prepared by: BAS
File Name: MPRCOST

Range Name: AD - GROSS

Alias: I (Z151) Location: V119
Contained in: PRC - TABLE

DESCRIPTION:

e e

CELL FOR TOTAL ADMINISTRATIVE (AD) GROSS SALARIES FOR QUARTER

WHERE USED:

FORMULA TABLE: QUARTER WORKSHEET (Z151)

Source: Napa County California

User Manual

Often the most important, but least considered compo-
nent of external documentation for a spreadsheet application
is the user manual. If anyone other thah the designer is to use
the spreadsheet, there must be coherent instructions. Even
when the application is menu driven or otherwise “user
friendly,” there remains an important need for clear, easy to
follow, written support to facilitate the spreadsheet
application’s use.

The user manual can become critical to the success or
failure of an application; a poorly written manual can effec-
tively sabotage the user acceptance of a new application. On
the other hand, a well written manual can speed acceptance
and increase user productivity. The user manual should be
informative rather than technical. It is the communication
link between user and spreadsheet application. The important
point in user documentation is 10 make the manual clear,
concise, direct — and most importantly, usable.

The user manual should include a simple description of
the spreadsheet application’s purpose, including what it does,
and its inputs and outputs. Assumptions about the user’s
expertise should be stated at the manual’s beginning and
referenced to locations of supporting detail for any “as-
sumed” information. The manual’s main body should con-
tain instructions on operating the application.

The following guidelines should be considered while
preparing the user manual: For clear and easy to follow
instructions, use numbered step-by-step instructions whenever
possible, minimizing cross-references [2]. Show users —
rather than tell them. In other words, emphasize instructions

and minimize descriptive narratives — the user should be
doing, not reading. Use illustrations: screens/diagrams/pic-
tures. They are truly worth the proverbial thousand words
and can greatly enhance and clarify instructions.

Layout or presentation of material is also important.
Wide margins, lots of blank “white” space, and an easy-on-
the-eyes typeface will give the manual an uncluttered, easy
to read look. Another suggestion is adding guideposts for
readability. These include a table of contents, and index, and
tabs to identify sections. Placed in a three-ring binder, such a
manual is attractive, easy to use, and conveniently updated.

One final and extremely important guideline is to test
the manual before its publication. Let some typical users try
using drafts of the manual. Their feedback is an invaluable
measure of the manual’s strengths, weaknesses, and probable
success. With this additional information, the manual can be
improved from the user perspective so that it, and the appli-
cation, will be successfully used and accepted. (Table 9
illustrates a portion of a completed user manual.)

CONCLUSIONS

Fourth generation languages have generated a great deal
of interest and enthusiasm, but in some respects they have
not measured up to the high expectations created by their
advance notices. Many problems associated with using fourth
generation languages stem from people and environments
rather than the software itself. These high-productivity lan-
guages still require a need for logic clarity in application
designs and suitable documentation of applications. A need
for precise communication is intensified in the new shared

40 Journal of Information Technology Management, Volume II, Number 1, 1991

STRUCTURED DOCUMENTATION FOR A FOURTH GENERATION LANGUAGE

Figure 9. User Manual

USING THE PAYROLL COST SPREADSHEET

menu will appear at the top of the screen.

The menu selections are:

The newly created spreadsheet uses a DRIVER MENU to lead the user through a series of steps to
enter data, print, and save the worksheet. When in the "ready" mode, this menu can always be accessed
by holding down the "Alt" key and pressing D. Whenever the spreadsheet file is retrieved, this Driver

MONTH MENU: Month activities

-- enter PRC or SBA data

-- sort records

-- print worksheets, etc.
QUARTER MENU: Quarter activities
SAVE: Save the worksheet to a disk file
EXIT: End Lotus 1-2-3 session

You may choose a selection in two ways:

@ {L Move the cursor to the chosen selection and press return,
or,
; 2) Type in the first letter of your selection choice.

O ——

MONTH and QUARTER selections present new menus. SAVE returns to the Driver menu after

Source: Napa County, California

saving the worksheet. EXIT gives the choice whether to quit or to continue.

environments.

The documentation methodology presented in this paper
was tested with a major payroll cost system’s spreadsheet
application in generating a government agency’s quarterly
claims report. The following conclusions were made follow-
ing the research and actual experience of application devel-
opment:

(1) Evidence that some fourth generation language ap-
plications are following the same path of third generation
languages: poorly designed, unreliable, hard-to-maintain
codes. It seems that little has been learned from third gen-
eration language experiences and the trauma must be re-
lived to reinvent solutions. Three reasons this situation may
develop: (a) unrealistic expectations about fourth generation
languages, (b) structured tools often do not apply directly to
fourth generation languages, and (c) fourth generation lan-

guages have attracted a new group of non-data processing
users who are not aware of structured techniques.

(2) The concepts of structured approach still apply in the
fourth generation language environment. An increasing
popularity of “user-friendly” software leads to more users,
more applications, and more application designers. Many
users become designers, and there is an increasing incidence
of application sharing and recycling among user-designers.
If these applications are to be reliable, maintainable, and
expandable, then communication in this shared environment
is critical. More than ever, there is a need to educate and train
users in the structured approach to application building and
documentation.

(3) The declarative nature of spreadsheet languages does
require a modification of the use of structured tools for
application documentation. The model which is expressed in

Journal of Information Technology Management, Volume II, Number 1, 1991 41

NECCO, TSAl AND SMITH

a framework cell relationship using formulas, macros, and
named ranges is unique to these packages and must be spe-
cifically addressed in verifying and maintaining application
templates.

(4) The proposed documentation tools are tedious and
time consuming. They do provide essential information and

specifically answer a need for spreadsheet documentation,

but they also add considerable time to the application build-
ing process. Without an accompanying enforced documen-
tation standard policy, most designers would probably avoid
the development of necessary documentation altogether.

(5) In this specific application, the results to date suggest
that the user manual has been important for training new
employees and answering processing questions necessary
for generating reports. The overall documentation has been
considered a timesaver whenever there is a need to revise the
system for changes in information requirements. Therefore,
the authors believe that the documentation tools presented in
this paper are an improvement over existing methods for
documenting spreadsheets because they specifically con-
sider the unique form and relationships of commands in a
spreadsheet declarative language. This proposed documen-
tation methodology is not the definitive answer to spreadsheet
documentation, but it should be considered by those organi-
zations who desire improved procedures for developing and
documenting electronic spreadsheet applications.

REFERENCES

{1} Berry, T, “Writing Structured Macros,” Lotus, 1,
Number 4, August 1985, pp.64-67.

{2] Blake, G. and Bly, R.W, “Ten Tips for Better User
Manuals,” Computer Decisions, 16, Number 11, Sep-
tember 1984, pp.68-70.

[3] DeMarco, T., Structured Analysis and System Specifi-
cation, Prentice-Hall, Englewood Cliffs, New Jersey,
1979.

[4] Gane, C. and Sarson, T., Structured System Analysis: Tool
and Techniques, Prentice-Hall, Englewood Cliffs, New
Jersey, 1979.

[5] Grupe, E, “Tips tor Better Worksheet Documentation,”
Lotus, 1, Number 4, August 1985, pp.68-69.

[6] Howitt, D., “Avoiding Bottom-Line Disaster,” InfoWorld,
7, Number 7, February 11, 1985, pp.26-30.

[7] Martin, J., Fourth Generation Languages, Volume One,
Principles, Prentice-Hall, Englewood Cliffs, New Jer-
sey, 1985.

[8] Martin, J. and McClure, C., Diagramming Technique for
Analysts and Programmers, Prentice-Hall, Englewood
Cliffs, New Jersey, 1985.

[9] LeBlond, G. and Cobb, D., Using 1-2-3, Que Corpor-
ation, Indianapolis, Indiana, 1983.

[10] Necco, C., Gordon, C. and Tsai, N., “Fourth Generation
Languages and Microcomputers,” The Journal of Com-
puter Information Systems, Winter 1987.

[11] Om, K., Structured Systems Development, Yourdon
Press, New York, 1977.

[12] Om, K., Structured Requirements Definition, Orr &
Associates, Topeka, Kansas, 1981.

{13] Smith, B., “Structured Techniques Applied to Fourth
Generation Languages,” Master’s Project, California
State University, Sacramento, California, Spring 1986.

ABOUT THE AUTHORS

Charles R. Necco is Professor of Management Infor-
mation Systems in the School of Business Administration at
California State University, Sacramento. He received his
Ph.D. in business from the University of Illinois. His major
teaching and research interests are in the areas of systems
analysis and design, fourth generation languages, and deci-
sion support systems. His work has been published in MIS
Quarterly, the Journal of Information Systems, the Journal
of Systems Management, and others.

Nancy W. Tsai received her Ph.D. in business from the
Uriversity of Texas at Austin. She is presently a professor of
Management Information Systems in the School of Business
Administration at California State University, Sacramento.
Her teaching and research interests are related to database
systems, fourth generation languages, and systems analysis
and design. She has published papers in several journals
such as MIS Quarterly, the Journal of Systems Manage-
ment, and the Journal of Computer Information Systems.

Barbara Smith is an Information Analyst with the
County of Napa Management Information Services Depart-
ment. She also develops training curriculum and teaches
Computer Science and MIS courses at Napa Valley College.

42 Journal of Information Tecl;nology Management, Volume II, Number 1, 1991

